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Classical conditioning of the eyeblink reflex is a relatively simple procedure for studying associative learning that was first developed for use with
human subjects more than half a century ago. The use of this procedure in laboratory animals by psychologists and neuroscientists over the past 30
years has produced a powerful animal model for studying the behavioral and biological mechanisms of learning. As a result, eyeblink conditioning is
beginning to be pursued as a very promising model for predicting and understanding human learning and memory disorders. Among the many
advantages of this procedure are (a) the fact that it can be carried out in the same manner in both humans and laboratory animals; (b) the many ways
in which it permits one to characterize changes in learning at the behavioral level; (c) the readiness with which hypotheses regarding the neurologi-
cal basis of behavioral disorders can be formulated and tested; (d) the fact that it can be used in the same way across the life-span; and (e) its ability
to distinguish, from normative groups, populations suffering from neurological conditions associated with impaired learning and memory, including
those produced by exposure to neurotoxicants. In this article, we argue that these properties of eyeblink conditioning make it an excellent model
system for studying early impairments of learning and memory in developmental neurotoxicology. We also review progress that has been made in
our laboratory in developing a rodent model of infant eyeblink conditioning for this purpose. - Environ Health Perspect 102(Suppl 2):131-139
(1994).
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Introduction
The prevalence of developmental learning
disabilites in our society has generated
much concern over the need for research
that can provide early assessment and treat-

ment, as well as identify the fundamental
causes, of developmental learning disorders
(1,2). Although many factors can con-

tribute to the etiology of these disorders, it
is becoming increasingly clear that expo-

sure to chemicals during the prenatal and
early postnatal period is an important one.

It is well established that developmental
exposure to drugs of abuse and certain
environmental chemicals can adversely
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affect the development of brain and behav-
ior in humans and laboratory animals
(3,4). The cases of environmental lead and
fetal alcohol syndrome are two widely
known examples that have received much
coverage in the popular media (5,6).
Mental retardation produced by the devel-
opmental neurotoxicity of these and other
chemicals has motivated the development
of animal models for studying impaired
neurocognitive development (7). In addi-
tion to experimentally confirming relation-
ships that are commonly correlational in
human studies and identifying potential
biological mechanisms of these relation-
ships; they also provide data for safety eval-
uation of chemicals that can inform human
risk assessment in the absense of actual
human exposure (4).

Risk assessment is a formal process used
by the government and private industry to
assess the safety of chemicals under certain
exposure conditions. Although human tox-
icity data are used when possible, animal
models play a vital role in this process
(8-10). Currently, risk assessment in neu-
rotoxicology makes use of the "safety fac-
tors approach," in which the level of
exposure that is without adverse effect (the
no-adverse-effects-level, NOAEL) in an
empirical study is divided by a number of
safety, or uncertainty factors [UFs, (11)] to

derive a reference dose (RfD), the exposure
level thought to pose little or no health
risks to humans (9,10). Safety factors are
used to allow for uncertainties in the
empirical data surrounding variables that
may determine sensitivity to a neurotoxi-
cant, variables such as differences in the
species or age of test subjects, or in route or
duration of exposure.

The limitations of the safety factors
approach have generated much interest in
the environmental health sciences in devel-
oping alternative approaches to risk assess-
ment that incorporate information about
the biological mechanisms of toxicity
(8,12). For example, biologically based
models seek to develop mechanistic expla-
nations of toxicity that address species dif-
ferences in a manner that would reduce or
supplant the need for uncertainty factors
(12). Such models consider both the rela-
tionship between exposure to a compound
and the dose delivered to target tissues
(exposure-dose) and the relationship
between this dose and its subsequent toxic
effects (dose-effect). A quantitative model
that covers this exposure-dose-effect rela-
tionship has recently been developed for
studying chemical-induced carcinogenicity
(12). Predicting human cancer risk posed
by exposure to a given chemical is achieved
by applying appropriate values for humans
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to the parameters of this model. To our
knowledge, no models of this kind have yet
been developed to predict learning and
memory disorders in developmental neuro-
toxicology.

To develop a biologically based model
of neurotoxicant-induced memory impair-
ment, the effects of chemical exposure on
memory must be examined in both
humans and animals in terms of interven-
ing effects on the nervous system (Figure
1). The relationship between exposure and
tissue dose (neurotoxicant and brain) is
addressed by physiologically based pharma-
cokinetic (PBPK) models, whereas the rela-
tion between tissue dose and neurotoxic
effect (brain and memory) is addressed by
biologically based dose-response (BBDR)
models. To accomplish this, one must
study a form of memory that a) allows one
to characterize changes in learning at the
behavioral level in a number of ways; b) is
well understood at the neurobiological
level; c) lends itself readily to parallel stud-
ies in both humans and laboratory animals;
a) can be used to study the same form of
learning in developing organisms (and
across the life-span) in a manner that pro-
vides a link with maturation of relevant
neural systems; e)and is able to detect the
effects of developmental neurotoxicants
that interfere with maturation of brain sys-
tems that are involved in memory.

The thesis of the present article is that
classical conditioning of the eyeblink reflex
offers the potential to be a valuable model
for this purpose. It has been argued else-
where that eyeblink conditioning repre-
sents a powerful approach to the study of
neurotoxicant-induced neurodegenerative
disorders that are associated with memory
loss during aging (13,14). We will argue
that this learning preparation is equally
powerful as an animal model for studying
developmental disorders of learning and
memory and describe progress that our lab-
oratory has made toward establishing
infant eyeblink conditioning as a model of
learning in developmental neurotoxicology.

Advantages of Eyeblink
Conditioning for the Study of
Developmental Learning
Disorders

In this section we will describe the
advantages of using Pavlovian conditioning
of the eyeblink reflex to study developmen-
tal learning disorders. Few behavioral test-
ing procedures lend themselves to
behavioral analysis, neurobiological analy-
sis, comparisons across species (animal-to-
human), comparisons across the life-span,
and to studies of abnormal brain develop-
ment as well as eyeblink conditioning does

PBPK
Modeling

Human:

Animal:

BBDR
Modeling

Figure 1. A schematic diagram representing the elements of a biologically based model of memory disorders in neuro-
toxicology.

(or has the potential to do). Some of these
advantages have been discussed by others
in connection with studies of the neurobi-
ology of learning (15,16) or of learning in
human populations suffering from aging-
related neurodegenerative disorders
(13,14). In addition to these, we will argue
that the eyeblink conditioning paradigm
offers some special advantages that apply
more uniquely to the analysis of develop-
mental disorders.

Behavioral Chararization
Eyeblink conditioning is a Pavlovian con-
ditioning procedure that involves contin-
gent, temporal pairings of a conditional
stimulus (CS, typically a pure tone) and an
unconditional stimulus (US, typically a
brief airpuff to the eye). The airpuff elicits
a reflexive eyeblink and, following repeated
conditioning trials, this response comes to
be evoked by the tone CS prior to or in the
absense of the airpuff US. This simple
form of associative learning has been char-
acterized extensively at the behavioral level
(17) and possesses several features that aid
behavioral analysis of learning and mem-
ory. These include its ability to distinguish
associative versus nonassociative sources of
behavioral change, address the issue of
learning versus performance, permit varia-
tion in a range of parameters that are
important for associative learning, and pro-
vide a family of learning phenomena that
vary in complexity and in the number of
"higher order" neuropsychological
processes that are engaged.

The associative nature of eyeblink con-
ditioning is established by comparing per-
formance of subjects trained with
contingent, temporal pairings of tone and
airpuff with that of control subjects that
receive tone and airpuff presented in an
unpaired, or randomly paired manner. The
very low percentage of eyeblink responses
to the tone in such control subjects indi-
cates that eyeblink conditioning is an asso-

ciative phenomenon and that sensitization
or pseudoconditioning contribute relatively
little to performance (18).

Another useful feature of eyeblink con-
ditioning is that the integrity of the blink
reflex to the airpuff itself (the uncondi-
tioned response, UR) is readily distin-
guished from learned responses to the tone
which precede airpuff onset (the condi-
tioned response, CR). Thus, the possibility
that a neurotoxicant, a neurological condi-
tion, or some other behavioral or biological
variable has influenced the conditioned
response (learning) or the reflex itself (per-
formance) can be monitored easily on a
trial-by-trial basis.

One can further isolate the effects of
such variables on neuropsychological func-
tion in this procedure by manipulating a
number of parameters. Variations in inten-
sity or duration of the tone or airpuff, the
interval between tone and airpuff onset, or
other aspects of the temporal or contingent
relationship between these stimuli, can be
used to assess the role of sensory, motor,
and motivational processes in learned per-
formance. Such variations also produce
characteristic effects on eyeblink condition-
ing (17). The fact that these "laws of learn-
ing" appear to apply similarly across
mammalian species (including humans)
suggests that similar neural and psychologi-
cal mechanisms are engaged (14,19).

Finally, there are a number of "higher
order" phenomena of eyeblink condition-
ing that make it is possible to study the
manner in which processes of attention
(20), memory (21), and perceptual organi-
zation (22) modulate associative learning;
and to assess the integrity of brain systems
involved in these processes [(23); see
below] For example, delay and trace condi-
tioning have been contrasted in studies of
memory loss associated with aging. In delay
conditioning, tone and airpuff overlap in
time, whereas in trace conditioning, tone
and airpuff are temporally separated by an
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appropriate "trace interval." Aged rabbits
show deficits in trace but not delay condi-
tioning (13).

In summary, there are many important
behavioral features and properties of eye-
blink conditioning that greatly enhance the
sophistication with which one can charac-
terize learning impairments associated with
abnormal development.

Neural Basis ofEyeblink Conditioning
A perhaps more significant advantage of
eyeblink conditioning, is the impressive
degree to which the neural circuitry sup-
porting this form of learning has been stud-
ied and characterized. A model of the
essential neural circuitry for eyeblink con-
ditioning has been proposed that includes
elements of cerebellar and brain stem sys-
tems (Figure 2) (24). In this model, neural
activity representing the airpuff uncondi-
tioned stimulus (US) is transmitted to the
cerebellum via climbing fibers that arise
from the dorsal accessory olive (DAO).
Electrical stimulation of the DAO can
serve as an effective US when paired with
the tone conditioned stimulus (CS) (25).
Furthermore, when the tone and DAO
stimulation are explicitly unpaired, rapid
extinction of the CR occurs. Neural activ-
ity representing the conditioned stimulus
arises from the pontine nuclei and enters
the cerebellum via the mossy fiber projec-
tion. Electrical stimulation of the mossy
fiber input to the cerebellum can serve as a

Figure Z Schematic diagram depicting the hypothesized
circuitry for eyeblink conditioning. The CS pathway enters
the cerebellum via projections from the pontine nuclei
(Pontine N). The US pathway enters the cerebellum via
projections from the inferior olive (1.0.). The CS and US
pathways converge on the nucleus interpositus (Int.). The
CR pathway leaves the Int., synapses with the red
nucleus (Red N), and ultimately descends to motor neu-
rons that control the eyeblink reflex. From Thompson (24);
reprinted with permission.

CS when it is paired with an airpuff US
(26). Thompson (24) has hypothesized
that the site of the memory trace for this
conditioned response is at the point where
mossy fiber inputs (CS) and climbing fiber
inputs (US) converge, the cerebellar deep
nuclei and cortex. This notion is supported
by the finding that lesions of the cerebellar
deep nuclei completely and irreversibly
abolish conditioned responding (27-30).
The conditioned response pathway extends
from the ipsilateral interpositus nucleus,
crosses the midline, synapsing in the mag-
nocellular region of the red nucleus. The
red nucleus projects to motor neurons that
control the eyelid response. This model
accounts for most of the data concerning
the neural circuitry required for delay con-
ditioning in eyeblink conditioning. To be
.able to specify the neural substrates of
learning at this level of detail creates an
almost unique opportunity to use eyeblink
conditioning for studies that can benefit
from understanding brain-behavior rela-
tions.

Although it is clear that the "essential"
circuitry for eyeblink conditioning is below
the level of the thalamus (24,31), hip-
pocampal activity during acquisition can
also modulate the rate of learning (32).
Berger and colleagues have found that hip-
pocampal neuronal activity forms a perfect
model of the behavioral changes during
nictitating membrane conditioning in the
rabbit (33). The pattern of CS-evoked
pyramidal cell activity directly models the
shape of the conditioned response (34).
Moreover, manipulations that alter hip-
pocampal electroencephalogram (EEG),
including medial septal lesions and the
application of A-9-tetrahydrocannabinol
(THC), retard the rate of acquisition (32).
Cholinergic blockade also retards the rate
of eyeblink conditioning (35-37). Thus,
although hippocampal lesions do not
impair eyeblink conditioning (38), acquisi-
tion rate is modulated by hippocampal
activity.

In addition to modulating rate of delay
conditioning, there is also extensive evi-
dence for hippocampal involvement in
higher order phenomena of eyeblink condi-
tioning. Examples of such phenomena
include trace conditioning (21), latent
inhibition (20), discrimination reversal
(39), and sensory preconditioning (40).
Thus, it appears that eyeblink conditioning
is mediated by an interaction between the
hippocampus (and associated forebrain
structures) and brainstem cerebellar path-
ways. Indeed, a mathematical model
describing how this interaction may sub-

serve different phenomena of eyeblink con-
ditioning has recently been formulated
(23). This model makes it possible to make
quantitative predictions regarding the
effects of damage to hippocampal-cerebel-
lar pathways on various behavioral phe-
nomena of eyeblink conditioning. In the
context of risk assessment in developmental
neurotoxicology, this model has the poten-
tial to serve as a BBDR model relating ner-
vous system toxicity to memory
impairment (Figure 1).

In summary, there has been extensive
empirical and theoretical progress in the
analysis of the neurobiological mechanisms
of eyeblink conditioning. As a result, this
learning preparation offers unusual poten-
tial to understand the behavioral effects of
developmental neurotoxicants in terms of
their potential neural target sites of action
(see below).

Comparison ofHumans and
Laboratory Animals
Another advantage of eyeblink condition-
ing is that it makes it possible to study
learning in humans and in laboratory ani-
mals with the identical procedure (13,14).
Preparations for studying eyeblink condi-
tioning exist in rats (30,41,42); rabbits
(16,17), and humans (14). Moreover, the
general behavioral properties of eyeblink
conditioning appear to be similar across
species. Perhaps more importantly, the evi-
dence that is available thus far suggests that
the biological mechanisms of eyeblink con-
ditioning are similar across species as well.
Comparisons of studies involving humans
and animal models indicate that the effects
of a number of biological variables on eye-
blink conditioning are similar in different
species. For example, cerebellar damage,
hippocampal damage, aging, and adminis-
tration of anticholinergic drugs are vari-
ables that all appear to have similar effects
in humans and laboratory animals (14).
The fact that the behavioral and biological
properties of eyeblink conditioning appear
to have been conserved across mammalian
species could significantly increase the abil-
ity of animal studies involving this proce-
dure to characterize and predict
neurotoxicity in humans.

Comparisons Across the Life-Span
In addition to cross-species comparisons,
the eyeblink conditioning procedure is
almost unique in the degree to which it
lends itself to comparisons across the life-
span (43). Because eyeblink conditioning
does not require language competence and
makes relatively simple sensorimotor
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demands on test subjects, the identical test
procedure can be used in neonatal human
infants as young as 10 to 20 days of age
(44) or in senior citizens older than 80
years of age (45). Studies of eyeblink con-
ditioning have also been carried out in aged
rats (42) and rabbits (13,43). In fact, nor-
mal aging produces a decline in the rate of
eyeblink conditioning in both human and
animal subjects (in a certain proportion of
the test population). It has been hypothe-
sized that this decline reflects aging-related
changes in the neural systems that are
involved in eyeblink conditioning (13,14).
It has also been reported that patients with
Alzheimer's disease show even more pro-
nounced deficits in eyeblink conditioning
relative to age-matched controls. There is
evidence that aluminum neurotoxicity may
be a risk factor for this neurological disor-
der and studies that have used aluminum-
exposed rabbits as a model of Alzheimer's
disease have demonstrated acquisition and
retention deficits with the eyeblink condi-
tioning paradigm (13,46,47).

Applications to Developmental
Learning Disorders
The success of eyeblink conditioning as an
approach to the study of aging-related
memory disorders is encouraging and sug-
gests that it would also be fruitful for the
study of developmental learning disabili-
ties. The neural systems that are important
for eyeblink conditioning-the cerebellum
and hippocampus-undergo protracted
postnatal development in humans and
other animals (48,49). This protracted
development makes these systems likely
targets of developmental neurotoxicants
and there are studies suggesting that this is
indeed the case for a number of chemical
compounds. There is also evidence that
certain developmental learning disorders
are associated with neuropathology in these
regions. Finally, the fact that the procedure
can be carried out in human infants creates
an unusual opportunity to perform parallel
studies in humans and in laboratory ani-
mals. For these reasons, we have under-
taken an effort to develop a preparation for
studying eyeblink conditioning in infant
rats. In this section, we will briefly elabo-
rate some of these points. We will then
describe our progress in implementing an
animal model for studying the early devel-
opment of eyeblink conditioning.

The neuroanatomical structure that
appears to be critical for eyeblink condi-
tioning, the cerebellum (Figure 2), under-
goes massive and prolonged postnatal
maturation. In the rat, the volume of the

cerebellar cortex increases more than 20-
fold during the first three postnatal weeks
(Figure 3) (50). Cells of the deep nuclei,
and Purkinje cells are formed before birth,
but granule, stellate, and basket cells are
generated and proliferate after birth. Most
stellate and basket cells are formed during
the first two weeks after birth. Granule cells
are generated throughout the first three
postnatal weeks with a peak in proliferation
during the third week (Figure 3) (49). In
addition to the massive generation of
microneurons in the cerebellar cortex, each
of the cell types within this structure
undergoes extensive morphological devel-
opment and synaptogenesis during the first
few postnatal weeks (49). The late develop-
ment of the cerebel-

lum may make it vulnerable to some devel-
opmental neurotoxicants. Indeed, certain
solvents (ethanol and methanol), heavy
metals (e.g., methylmercury) and antimi-
totic agents have been reported to disrupt
cerebellar development (51). As a result,
eyeblink conditioning could provide a very
powerful means of assessing learning
deficits associated with developmental
exposure to these neurotoxicants. The hip-
pocampus and related structures also
undergo substantial postnatal growth and
development in a variety of mammalian
species (48,52-54). For example, studies of
the rat have shown that 72% of dentate
granule cells are generated between birth
and 16 days of age, and 94% of granule cell

mm

Figure 3. A Sagittal view of the vermis of rats of different postnatal ages. B. Graph of areal and laminar postnatal
growth of the cerebellar cortex. From Altman (49); reprinted with permission.
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synapses appear between 11 and 25 days of
age. Additionally, levels of hippocampal
acetylcholinesterase activity and myelin
staining show substantial postnatal
increases (48). It is also well established
that hippocampal development can be
altered by a range of developmental insults
(55). These include antiproliferative agents
(48,56); ethanol (57-59); and heavy met-
als (7,60). Because of the role of the hip-
pocampal formation in certain phenomena
of eyeblink conditioning, this preparation
may also be useful for assessing impair-
ments in memory development that are
produced by developmental damage to this
forebrain structure.

There is also evidence that certain dis-
orders of human behavioral development,
such as those associated with autism, men-
tal retardation, undernutrition, and devel-
opmental methylmercury neurotoxicity are
sometimes accompanied by cerebellar dam-
age or hypoplasia (51,61-63). There are
also many human neurological disorders
associated with pathology to the hip-
pocampus and/or related structures,
including ischemia (64), Down's syn-
drome (65), schizophrenia (66), undernu-
trition (67), hypoglycemia (68),
hypothyroidism (69), early exposure to
lead (70,71), and fetal alcohol exposure
(72,73). As a result, eyeblink conditioning
could be useful in the early detection and
characterization of functional loss associ-
ated with these neurological conditions.

This possibility is supported in a study
by Ohlrich and Ross (74), in which nor-
mal and mentally retarded children were
trained with delay conditioning, discrimi-
nation, and discrimination reversal proce-
dures with the eyeblink conditioning
preparation. Normal children showed
higher levels of conditioning with an 800
msec interstimulus interval (ISI) than a
500 msec ISI and showed discrimination
learning. Mentally retarded children did
not benefit from the ISI manipulation and
did not show discrimination learning,
although they did show moderate levels of
conditioning at both 500 and 800 msec
ISIs. Another study examined college-aged
normal and mentally retarded subjects with
delay conditioning and partially reinforced
groups (75). The mentally retarded sub-
jects were impaired on acquisition and
extinction of eyeblink conditioning. The
ability of eyeblink conditioning to distin-
guish normal and mentally retarded chil-
dren and adults suggests that this
procedure may be useful for assessing and
characterizing a variety of human neuro-
logical conditions associated with impaired

intellectual development. Because of the
involvement of the cerebellum and hip-
pocampus in eyeblink conditioning, this
prospect seems particularly likely for neu-
rological disorders associated with neu-
ropathology or impaired maturation of
these structures. When such disorders are
produced by developmental exposure to
drugs and chemicals, it would be possible
to carry out parallel studies in animal mod-
els. Our work with an animal model of
infant eyeblink conditioning is described in
the next section.

A Rodent Model for Studying
the Development of Eyeblink
Conditioning
In this section, we describe efforts in our
laboratory to develop a rodent model for
studying the early development of eyeblink
conditioning. Thus far, our studies have
asked whether there are ontogenetic
changes in eyeblink conditioning in the rat,
whether such changes reflect maturation of
associative processes, and whether neuro-
toxicants that interfere with cerebellar mat-
uration impair eyeblink conditioning
during infancy. Because some of these
experiments have not been extensively
reported elsewhere, we will describe certain
aspects of our methods and procedures in
some detail.

Eyeblink Conditioning Is Associative
and Develops Postnatally in the Rat
The developmental analysis of eyeblink
conditioning began when a method for
conditioning freely moving adult rats (30)
was adapted for use with the infant rat
(76). In this procedure, rats are surgically
implanted with two electrodes, one for
measuring eyelid electromyographic
(EMG) activity and one for delivering brief
electrical stimulation in the vicinity of the
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eye. Subjects are placed in an enclosure
containing a speaker for delivering the
auditory CS; electrodes are connected via a
headstage and commutator to peripheral
devices and a personal computer which col-
lects data and controls experimental events.
In the first study that we will describe, rat
pups were trained in eyeblink conditioning
on postnatal day (PND) 17 or 24. At each
age, pups were trained with delay condi-
tioning or unpaired control procedures.
Delay conditioning trials involved pairings
of a 380 msec tone conditioned stimulus
(CS) and a 100 msec perioccular-shock
unconditioned stimulus (US). In the
unpaired control condition, the CS and US
were presented in a "pseudorandom" order
such that no more than three presentations
of either stimulus occurred consecutively.
The paired and unpaired groups received
the same number of stimulus presentations
at the same average rate across each session.
This unpaired group is an important con-
trol because it indicates levels of sensitiza-
tion, pseudoconditioning, and/or
spontaneous EMG activity which could
lead one to overestimate the amount of
associative learning in the paired condition.

The results of this experiment are
shown in Figure 4. Rats trained on PND
17 in the paired condition (left panel;
closed circles) showed much less condition-
ing over 300 trials than rats tested on PND
24 (right panel; closed circles). Moreover,
the difference in rate of conditioning
reflected a difference in the amount of
associative learning, as indicated by the dif-
ference between given paired and unpaired
groups at each age. Pups trained on PND
24 showed a greater difference between
paired and unpaired conditions (right
panel; closed vs open circles) than pups
trained on PND 17 (left panel; closed vs
open circles). These results clearly demon-

15 20 25 30 0 5

10-TRIAL BLOCKS

Figure 4. Results of an experiments designed to test the development of associative eyeblink conditioning in 17-day-old
(left panel) and 24-day-old rats (right panel). Data points depict mean (± SEM) percentage of conditioned responses (CRs)
as a function of training condition (closed symbols, paired; open symbols, unpaired controls), sessions, and trial blocks (10
blocks of 10 trials per session). Interruptions in the lines connecting data points represent session breaks. From Stanton
et al. (76).
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strate that associative eyeblink conditioning
is possible in infant rats and that rate of
conditioning develops dramatically
between PND 17 and 24.

Measures of Learning and Performance
As indicated previously, one of the more
valuable features of the eyeblink condition-
ing procedure is that it simultaneously pro-
vides measures of learning and measures of
performance. The importance of address-
ing the learning versus performance dis-
tinction can be illustrated with these
developmental data. One question that
could arise from the experiment just
described is whether the age-related differ-
ence in learned responding was actually the
result of differences in the performance
capabilities of the younger pups. For exam-
ple, one could imagine that the younger
pups simply could not hear the tone CS or
could not perceive or respond to the US as
well as the 24-day-old rats. Startle
responses can be used to determine
whether an animal can hear the tone CS
even in the absense of any conditioning.
Startles are whole body responses to the
tone CS that occur during the first 80 msec
of the CS period. Differences in US inten-
sity thresholds or in amplitude of the
unconditioned eyeblink response provide
information about the ability of pups to
generate a defensive blink response per se.
This unconditioned response can be distin-
guished operationally from responses to the
tone prior to, or in the absence of, the US,
which provides information about the
pup's ability to demonstrate learning.

Figure 5 shows an analysis of US inten-
sity thresholds and unconditioned response
amplitudes, and the percentage of startle
responses in pups trained as weanlings or
preweanlings. Preweanling pups showed at
least as many startle responses to the tone
CS as weanling pups (left panel, the two
age groups did not differ statistically).
Furthermore, when the US level was the
same for both groups, preweanling pups
produced unconditioned responses that
were the same amplitude as those produced
by the weakling pups (right panel). These
results indicate that the difference in the
rate of conditioning was not owing to the
inability of preweanling rats to perceive or
respond to the US or to their inability to
hear the CS.

Disrupting Cerebellar Development
Impairs Eyeblink Conditioning in the
Infant Rat
Various antiproliferative agents given dur-
ing development can cause neuronal and
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Figure 5. Left panel: mean (±SEM) percentage startle responses (SRs) as a function of age of testing. SRs were defined
as short-latency (<80 msec) eyeblinks to the conditioned stimulus (CS) and were averaged across all training sessions.
The trend toward an age difference in this measure of unlearned responding to the CS was not statistically significant.
Right panel: mean (±SEM) unconditioned response (UR) amplitudes (left scale) and unconditioned stimulus (US) intensi-
ties (right scale) used as a function of age of testing. US intensities were determined separately for each individual sub-
ject, but the average intensity employed did not differ across age (21).

behavioral deficits in rodents that vary
according to age of exposure (77). For
example, early postnatal exposure to X-irra-
diation (49) or methylazoxymethanol
(MAM; 78,79) produces massive deficits in
the development of cerebellar cortical neu-
rons and deficits in the development of
motor skills. The development of different
cell types within the cerebellar cortex can
be reduced by exposure to MAM, depend-
ing on the timing of exposure and neuronal
birth dates (78-80). For example, most

*t; .. ..: ..:
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cerebellar granule cells are generated post-
natally (81) and MAM exposure on the
day of birth produces a large reduction in
cerebellar granule cells, but not Purkinje
cells (79). Thus, the late development of
microneurons in the cerebellar cortex make
its circuitry especially susceptible to neuro-
toxicants during postnatal development.

We recently conducted an experiment
that was designed to determine whether
disrupting the development of the cerebel-
lum by neonatal exposure to MAM would

..I

Figure 6. Sagittal cerebellar sections from 25-day-old rats injected with saline (ARB) or MAM [([20 mg/kg]) CD] on PND
0-1. Cerebellar hypoplasia was clearly evident in MAM-treated rat pups.
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0 SALINE
0-1 was not a general one but rather

1AM 20 mg/kg appeared only on the task, eyeblink condi-

tioning, for which the cerebellum is thought

to be critical.
In summary, we have shown that eye-

i\ \ _ I blink conditioning procedures can be carried
TI6 1 !\ if. PT 1\bl 1 out in infant rats and that this form of condi-

ITTFl M Ott11 I tioning emerges between 17 and 24 days after
birth. The failure of 17-day-old rats to show
conditioning does not reflect sensory or
motor impairment because startle responses
to the auditory CS and unconditioned eye-

I~ tA blink responses to the US do not differ from
,____ _____A_

those observed in 24-day-old rats. Finally,
0 5 10 15 20 25 30 disrupting cerebellar maturation with perina-

tal MAM exposure impairs acquisition of the
10-TRIAL BLOCKS conditioned eyeblink response during postna-

tal development without disrupting other
Figure 7. Data from an experiment examining the effects of MAM on eyeblink conditioning in infant rats. Data points
represent mean (±SEM) percentage conditioned responses (CRs) for rats given 20 mg/kg MAM (filled circles) or saline
(open circles) as a function of sessions, and trial blocks (10 blocks of 10 trials per session). Interruptions in the lines con-
necting data points represent session breaks.

disrupt eyeblink conditioning during infancy (dosed circles) showed much less condition-
(82). Rat pups were given two subcutaneous ing than pups given saline [open circles; (p<
injections of 20 mg/kg MAM, one each on 0.05)], although both groups showed an

PND 0 and 1, whereas pups in a control increase in conditioning across sessions (p<
group were given two successive injections of 0.05). Thus, neonatal exposure to MAM pro-

saline vehicle. Following MAM exposure, duced cerebellar hypoplasia and a deficit in
pups were left undisturbed except for peri- eyeblink conditioning in weanling rats.

odic cage changes until the beginning of This finding supports the notion that
experimental procedures. On PND 24 or 25, developmental neurotoxicants that disrupt
pups received three 100-trial sessions of delay maturation of the cerebellum will also disrupt
conditioning (as described earlier). Because the ontogeny of eyeblink conditioning, a

pups in this study were trained in a different form of associative learning that, in adult ani-
aparatus than was used in our previous mals at least, critically involves this brain
reports (76,83) we will describe it briefly. structure (27). This conclusion, of course,

The modified conditioning apparatus con- depends on the assumption that MAM did
sisted of four small animal chambers, each not significantly disrupt maturation of other
lined with sound absorbing foam and each brain systems. At the age of exposure (PND
housing a small stainless steel mesh cage 0-1) employed in this experiment, the effects
where the animal was placed during condi- of MAM on the cerebellum are much more

tioning. One wall of the chamber was fitted striking than effects on other gross neu-

with two audio speakers that could indepen- roanatomical regions (79). For example, the
dently produce tones of different frequencies. neocortical hypoplasia that is seen with gesta-

In other respects, the apparatus was similar to tional day 15 exposure to MAM (80) is not

that used previously (30,76;83). readily apparent following exposure on PND
Figure 6 shows the effects of neonatal 0-1. Nevertheless, it is possible that MAM

exposure to MAM on the cerebellum in sagit- may have affected neurons outside the cere-

tal sections. Comparison of sections from rats bellum (e.g., granule cells in hippocampus or

injected with saline (A,B) or MAM ([20 olfactory bulb) that proliferate during this
mg/kg) C,D]) show that cerebellar hypoplasia period of development. To assess possible
was dearly evident in MAM-treated rat pups. effects of MAM on forebrain structures, the
Further, the cellular structure of the cerebellar same rats that were tested for eyeblink condi-
cortex was dearly disrupted in MAM treated tioning were also tested on delayed alterna-
pups as demonstrated by the dispersion of tion in a T-maze under conditions that reveal
Purkinje cells throughout the granule cell dear effects of neonatal damage to the septo-
layer in some cerebellar lobules (Figure 3D). hippocampal pathway or prefrontal cortex

The behavioral results are shown in (84,85). There were no effects of MAM
Figure 7 in terms of the percentage of condi- treatment on acquisition of this alternation
tioned responses per 100-trial training ses- task (82). Thus, the learning impairment
sion. Pups neonatally exposed to MAM produced by exposure to MAM on PND

rorm~s or warningl matl lnvllVel fOreura struc-
tures, but for which the cerebellum is appar-
ently less critical. These findings suggest that
eyeblink conditioning in the developing rat

has significant potential as an animal model
of learning in developmental neurotoxicol-
ogy. Additional research to further develop
and elaborate this model is dearly warranted.

Summary and Conclusions
In this article, we have argued that eyeblink
conditioning promises to provide a powerful
paradigm for studying developmental learn-
ing disorders associated with exposure to neu-

rotoxic chemicals. This procedure makes it
possible to study associative learning in the
same manner in both humans and laboratory
animals, and throughout the lifespan. The
neurobiological mechanisms of this form of
learning are becoming well characterized and
there is evidence that these mechanisms are

similar in humans and laboratory animals.
Eyeblink conditioning distinguishes normal
individuals from those suffering from neuro-

logical conditions that impair learning and
memory. Because the cerebellum plays an

essential role in generating the conditioned
eyeblink response, this learning paradigm
could be useful for examining learning deficits
in infancy that are associated with cerebellar
pathology. In addition, there are phenomena
of eyeblink conditioning that may reflect
damage to the hippocampus and related struc-

tures. We have performed preliminary studies
with the antiproliferative agent, MAM, which
suggest that disrupting cerebellar maturation
impairs eyeblink conditioning in infant rats.

Further use of this paradigm in developing
animals and humans should both increase our

understanding of the fundamental mecha-
nisms of developmental learning disorders as

well as improve our ability to predict these
disorders in humans on the basis of chemical
safety evaluations performed in animals.
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